Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 37(1): 297-309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914903

RESUMO

Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-met , Receptores Proteína Tirosina Quinases , Rabdomiossarcoma Alveolar , Humanos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/enzimologia , Rabdomiossarcoma Alveolar/patologia , Proteínas Proto-Oncogênicas c-met/genética , Biomarcadores Tumorais/genética , Sistemas de Liberação de Medicamentos , Análise de Sobrevida , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Adolescente , Família Multigênica/genética , Análise de Componente Principal , Perfilação da Expressão Gênica
2.
Brain Sci ; 13(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37891793

RESUMO

Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.

3.
Mol Carcinog ; 62(12): 1817-1831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606187

RESUMO

The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Humanos , Glioblastoma/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética
4.
Front Immunol ; 13: 813888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720420

RESUMO

FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-ß cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-ß1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-ß1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-ß1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-ß1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-ß1/2 secretion. Reduced TGF-ß1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-ß1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-ß1/2.


Assuntos
Caderinas , Glioblastoma , Glioma , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Regulação para Cima
5.
Transl Oncol ; 14(7): 101097, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878524

RESUMO

A recent study in Scientific Reports identified glypican-3 (GPC3) as a novel extracellular interacting protein for FAT1 in hepato-cellular carcinoma (HCC) cells. FAT1 is a large transmembrane atypical cadherin with limited knowledge existing about its binding partners. While in Drosophila, dachsous (ds), another transmembrane member of the cadherin superfamily, is known to function as FAT1 ligand, no ligand is known in mammals so far. The revelation of GPC3 as a potential binding partner of FAT1 extracellular domain unfolds an opportunity to study potential triggers of FAT1 signaling in cancers. Available inhibitors of GPC3 in various phases of clinical trials also present an attractive option to curb GPC3-FAT1 signaling in tumors that overexpress these proteins.

6.
BMC Cancer ; 20(1): 62, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992226

RESUMO

BACKGROUND: Overexpression of FAT1 gene and its oncogenic effects have been reported in several cancers. Previously, we have documented upregulation of FAT1 gene in glioblastoma (GBM) tumors which was found to increase the expression of proinflammatory markers, HIF-1α, stemness genes and EMT markers in glioma cells. Here, we reveal NFкB (RelA)/RelA/p65 as the transcriptional regulator of FAT1 gene in GBM cells. METHODS: In-silico analysis of FAT1 gene promoter was performed using online bioinformatics tool Promo alggen (Transfac 8.3) to identify putative transcription factor(s) binding motifs. A 4.0 kb FAT1 promoter (- 3220 bp to + 848 bp w.r.t. TSS + 1) was cloned into promoter less pGL3Basic reporter vector. Characterization of FAT1 promoter for transcriptional regulation was performed by in-vitro functional assays using promoter deletion constructs, site directed mutagenesis and ChIP in GBM cells. RESULTS: Expression levels of NFкB (RelA) and FAT1 were found to be increased and positively correlated in GBM tumors (n = 16), REMBRANDT GBM-database (n = 214) and TCGA GBM-database (n = 153). In addition to glioma, positive correlation between NFкB (RelA) and FAT1 expression was also observed in other tumors like pancreatic, hepatocellular, lung and stomach cancers (data extracted from TCGA tumor data). A 4.0 kb FAT1-promoter-construct [- 3220 bp/+ 848 bp, transcription start site (TSS) + 1, having 17 NFкB (RelA) motifs] showed high FAT1 promoter luciferase-activity in GBM cells (U87MG/A172/U373MG). FAT1 promoter deletion-construct pGL3F1 [- 200 bp/+ 848 bp, with 3-NFкB (RelA)-motifs] showed the highest promoter activity. Exposure of GBM cells to known NFкB (RelA)-activators [severe-hypoxia/TNF-α/ectopic-NFкB (RelA) + IKBK vectors] led to increased pGL3F1-promoter activity and increased endogenous-FAT1 expression. Conversely, siRNA-mediated NFкB (RelA) knockdown led to decreased pGL3F1-promoter activity and decreased endogenous-FAT1 expression. Deletion of NFкB (RelA)-motif at - 90 bp/- 80 bp [pGL3F1δ1-construct] showed significant decrease in promoter activity. Site directed mutagenesis at -90 bp/- 80 bp and ChIP assay for endogenous-NFкB (RelA) confirmed the importance of this motif in FAT1 expression regulation. Significant reduction in the migration, invasion as well as colony forming capacity of the U87MG glioma cells was observed on siRNA-mediated knockdown of NFкB (RelA). CONCLUSION: Since FAT1 and NFкB (RelA) are independently known to promote pro-tumorigenic inflammation and upregulate the expression of HIF-1α/EMT/stemness in tumors, targeting the NFкB (RelA)-FAT1 axis may attenuate an important tumor-promoting pathway in GBM. This may also be applicable to other tumors.


Assuntos
Neoplasias Encefálicas/metabolismo , Caderinas/genética , Glioma/metabolismo , Fator de Transcrição RelA/metabolismo , Sítios de Ligação , Neoplasias Encefálicas/genética , Caderinas/química , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Transdução de Sinais
7.
Neuro Oncol ; 21(6): 775-785, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30953587

RESUMO

BACKGROUND: Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS: We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS: Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS: These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Dopamina D2/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptores de Dopamina D2/genética , Proteínas Repressoras/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Viral Immunol ; 32(3): 112-120, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30817236

RESUMO

The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.


Assuntos
Imunidade Adaptativa , Hepatite C/imunologia , Hepatite C/patologia , Imunidade Celular , Fígado/imunologia , Fígado/patologia , Citocinas/imunologia , Hepacivirus/imunologia , Hepatócitos/imunologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Linfócitos/virologia , Linfócitos T Citotóxicos/imunologia
9.
Int J Cancer ; 142(4): 805-812, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28994107

RESUMO

Glioblastoma (GBM) is characterized by the presence of hypoxia, stemness and local invasiveness. We have earlier demonstrated that FAT1 promotes invasiveness, inflammation and upregulates HIF-1α expression and its signaling in hypoxic GBM. Here, we have identified the role of FAT1 in regulating EMT (epithelial-mesenchymal transition) and stemness characteristics in GBM. The expression of FAT1, EMT (Snail/LOX/Vimentin/N-cad), stemness (SOX2/OCT4/Nestin/REST) and hypoxia markers (HIF-1α/VEGF/PGK1/CA9) was upregulated in ≥39% of GBM tumors (n = 31) with significant positive correlation (p ≤ 0.05) of the expression of FAT1 with LOX/Vimentin/SOX2/HIF-1α/PGK1/VEGF/CA9. Furthermore, positive correlation (p ≤ 0.01) of FAT1 with Vimentin/N-cad/SOX2/REST/HIF-1α has been observed in TCGA GBM-dataset (n = 430). Analysis of cells (U87MG/A172) exposed to severe hypoxia (0.2%O2 ) revealed elevated mRNA expression of FAT1, EMT (Snail/LOX/Vimentin/N-cad), stemness (SOX2/OCT4/Nestin/REST) and hypoxia markers (HIF-1α/PGK1/VEGF/CA9) as compared to their normoxic (20%O2 ) counterparts. FAT1 knockdown in U87MG/A172 maintained in severe hypoxia and in normoxic primary glioma cultures led to significant reduction of EMT/stemness markers as compared to controls. HIF-1α knockdown in U87MG cells markedly reduced the expression of all the EMT/stemness markers studied except for Nestin and SOX2 which were more under the influence of FAT1. This indicates FAT1 has a novel regulatory effect on EMT/stemness markers both via or independent of HIF-1α. The functional relevance of our study was corroborated by significant reduction in the number of soft-agar colonies formed in hypoxic-siFAT1 treated U87MG cells. Hence, our study for the first time reveals FAT1 as a novel regulator of EMT/stemness in hypoxic GBM and suggests FAT1 as a potential therapeutic candidate.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Caderinas/genética , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Encefálicas/metabolismo , Caderinas/biossíntese , Caderinas/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Tumorais Cultivadas
10.
Horm Metab Res ; 49(6): 452-456, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28472826

RESUMO

Insulinomas are rare pancreatic neuroendocrine tumors. The genetic causes underlying insulinoma are still being investigated. Recently, 3 independent studies reported a recurrent somatic mutation in YY1 gene (C>G; Thr372Arg) among insulinoma patients belonging to Chinese and Western Caucasian populations, which was found to increase insulin secretion by ß-cells. However, the status of this key gene variation remains unknown in patients of other ethnicities. We, therefore, screened Indian sporadic insulinoma patients for YY1 T372R mutation in the present study. Seventeen patients diagnosed with insulinoma were recruited retrospectively and their records of family history and clinical parameters were collected. Formalin-fixed paraffin-embedded tumor tissues were used to extract genomic DNA, which was subjected to PCR amplification of YY1 exon 5, followed by Sanger sequencing. Nucleotide sequences thus obtained were aligned against the documented sequence of YY1 exon 5. We found absence of C to G mutation at YY1 codon 372 in all 17 (100%) insulinoma tissues analyzed. On comparison with the mutation frequency observed in the Chinese patients, our results point to genetic heterogeneity in the pathogenesis of insulinoma. This is the first report on the status of YY1 T372R in insulinoma cases of Indian origin. This also warrants analysis of other documented as well as novel mutations in genes in insulinoma tumorigenesis.


Assuntos
Substituição de Aminoácidos/genética , Insulinoma/genética , Mutação/genética , Fator de Transcrição YY1/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
World J Hepatol ; 9(36): 1305-1314, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29359013

RESUMO

Present study outlines a comprehensive view of published information about the underlying mechanisms operational for progression of chronic hepatitis C virus (HCV) infection to development of hepatocellular carcinoma (HCC). These reports are based on the results of animal experiments and human based studies. Although, the exact delineated mechanism is not yet established, there are evidences available to emphasize the involvement of HCV induced chronic inflammation, oxidative stress, insulin resistance, endoplasmic reticulum stress, hepato steatosis and liver fibrosis in the progression of HCV chronic disease to HCC. Persistent infection with replicating HCV not only initiates several liver alterations but also creates an environment for development of liver cancer. Various studies have reported that HCV acts both directly as well as indirectly in promoting this process. Whereas HCV related proteins, like HCV core, E1, E2, NS3 and NS5A, modulate signal pathways dysregulating cell cycle and cell metabolism, the chronic infection produces similar changes in an indirect way. HCV is an RNA virus and does not integrate with host genome and therefore, HCV induced hepatocarcinogenesis pursues a totally different mechanism causing imbalance between suppressors and proto-oncogenes and genomic integrity. However, the exact mechanism of HCC inducement still needs a full understanding of various steps involved in this process.

12.
Int J Biochem Cell Biol ; 74: 60-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923292

RESUMO

Hypoxia is a salient feature of most solid tumors and plays a central role in tumor progression owing to its multiple contributions to therapeutic resistance, metastasis, angiogenesis and stemness properties. Reports exist in literature about hypoxia increasing stemness characteristics and invasiveness potential of malignant cells. In order to delineate molecular crosstalk among factors driving glioma progression, we used knockdown and overexpression strategies. We have demonstrated that U87MG and A172 glioma cells inherently have a subset of cells with high migratory potential due to migration-inducing Mena transcripts. These cells also have elevated stemness markers (Sox-2 and Oct-4). There was a significant increase of number in this subset of migratory cells on exposure to hypoxia with corresponding elevation (over 1000 fold) in migration-inducing Mena transcripts. We were able to demonstrate that a HIF-2α-Sox-2/Oct-4-Mena (INV) axis that is strongly activated in hypoxia and markedly increases the migratory potential of the cells. Such cells also formed tumor spheres with greater efficiency. We have correlated our in-vitro results with human glioblastoma samples and found that hypoxia, invasiveness and stemness markers correlated well in native tumor samples. This study identifies a novel signaling mechanism mediated by HIF-2α in regulating invasiveness and stemness characteristics, suggesting that under hypoxic conditions, some tumor cells acquire more migratory potential by increased Pan Mena and Mena INV expression as a consequence of this HIF-2α mediated increase in Oct-4 and Sox-2. These properties would help the cells to form a new nidus after local invasion or metastasis.


Assuntos
Glioma , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Adulto , Idoso , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/fisiopatologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
13.
PLoS One ; 10(3): e0118201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734817

RESUMO

Hypoxia is a hallmark of solid tumors including glioblastoma (GBM). Its synergism with Notch signaling promotes progression in different cancers. However, Notch signaling exhibits pleiotropic roles and the existing literature lacks a comprehensive understanding of its perturbations under hypoxia in GBM with respect to all components of the pathway. We identified the key molecular cluster(s) characteristic of the Notch pathway response in hypoxic GBM tumors and gliomaspheres. Expression of Notch and hypoxia genes was evaluated in primary human GBM tissues by q-PCR. Clustering and statistical analyses were applied to identify the combination of hypoxia markers correlated with upregulated Notch pathway components. We found well-segregated tumor-clusters representing high and low HIF-1α/PGK1-expressors which accounted for differential expression of Notch signaling genes. In combination, a five-hypoxia marker set (HIF-1α/PGK1/VEGF/CA9/OPN) was determined as the best predictor for induction of Notch1/Dll1/Hes1/Hes6/Hey1/Hey2. Similar Notch-axis genes were activated in gliomaspheres, but not monolayer cultures, under moderate/severe hypoxia (2%/0.2% O2). Preliminary evidence suggested inverse correlation between patient survival and increased expression of constituents of the hypoxia-Notch gene signature. Together, our findings delineated the Notch-axis maximally associated with hypoxia in resected GBM, which might be prognostically relevant. Its upregulation in hypoxia-exposed gliomaspheres signify them as a better in-vitro model for studying hypoxia-Notch interactions than monolayer cultures.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Receptores Notch/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Hipóxia Celular , Análise por Conglomerados , Glioblastoma/mortalidade , Glioblastoma/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estimativa de Kaplan-Meier , Osteopontina/genética , Osteopontina/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Análise de Componente Principal , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1 , Células Tumorais Cultivadas , Regulação para Cima
14.
World J Gastroenterol ; 19(44): 7896-909, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24307784

RESUMO

This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.


Assuntos
Hepacivirus/patogenicidade , Hepatite C/diagnóstico , Fígado/virologia , Imunidade Adaptativa , Biomarcadores/sangue , DNA Viral/sangue , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/sangue , Hepatite C/complicações , Hepatite C/metabolismo , Anticorpos Anti-Hepatite C/sangue , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fígado/imunologia , Fígado/metabolismo , Reação em Cadeia da Polimerase Multiplex , Valor Preditivo dos Testes , Prognóstico , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real
15.
J Gastroenterol Hepatol ; 28(12): 1869-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23800094

RESUMO

BACKGROUND AND AIM: Viral hepatitis needs an earliest diagnosis for its proper and timely treatment. Although serodiagnosis of viral hepatitis is in regular practice, however, it has certain limitations and points to alternate procedures of diagnosis. Present study was designed to develop a single-step multiplex real-time polymerase chain reaction (PCR) assay for detection of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV) and hepatitis E virus (HEV) related nucleic acids in sera from infected patients. METHODS: The PCR was standardized to detect HAV, HBV, HCV and HEV in serum using variables including annealing temperature, extension temperature, MgCl2 , and primer concentrations. The conserved regions of all viral genomes were used as targets for amplification. RESULTS: This novel assay was found to be a fast, sensitive, specific, and reproducible system for detection of HAV, HBV, HCV, and HEV in serum. The detection limit for different viral genomes at 100% level was found to be 280 copies/mL for HAV, 290 copies/mL for HBV, 30 copies/mL for HCV, and 300 copies/mL for HEV in a single-tube assay system. CONCLUSION: Present multiplex real-time PCR is the first report on single-step nucleic acid detection of HAV, HBV, HCV, and HEV in sera samples. It is an alternate diagnostic assay for common use in laboratories analyzing viral hepatitis cases.


Assuntos
Vírus de Hepatite/isolamento & purificação , Hepatite Viral Humana/diagnóstico , Adulto , Anticorpos Antivirais/sangue , Biomarcadores/sangue , DNA Viral/sangue , Hepacivirus/isolamento & purificação , Vírus da Hepatite A/isolamento & purificação , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/isolamento & purificação , Vírus da Hepatite E/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
World J Gastroenterol ; 14(39): 6044-51, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18932284

RESUMO

AIM: To investigate the prevalence and genotype distribution of Torque teno virus (TTV) in patients with different liver diseases and chronic renal failure treated at a referral hospital in North India. METHODS: Whereas prevalence of TTV was based on amplification of conserved region of ORF2 of TTV genome, the genotyping of TTV was carried out using restriction fragment length polymorphism (RFLP) procedure on the N22 region of ORF1. RESULTS: TTV-DNA was detected in 137 of 513 (26.7%) patients with liver diseases and 38 of 65 (58.5%) patients with chronic renal failure. TTV was also detected in 27% of healthy controls. The sequence analysis of the PCR product from 10 randomly selected cases failed to show a significant sequence divergence when compared with that of the TRM1 isolate of TTV genotype 1. The results of genotyping in 55 randomly selected patients showed the presence of genotype 1 (G1) in 53 (96.4%) and genotype 2 (G2) in 2 cases (3.6%), respectively. Other genotypes were not identified in this patient subgroup, suggesting that G1 is predominant in this area. The results of genotyping by RFLP were also supported by phylogenetic tree analysis, where G1 was found to be the major genotype. CONCLUSION: These results indicate that TTV is moderately present in Indian patients, with G1 to be the major genotype in North India. The pathogenicity and etiological role of TTV in different diseases is still a question mark and warrant further studies.


Assuntos
Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/genética , Torque teno virus/genética , Adulto , Idoso , Sequência de Bases , DNA Viral/genética , Feminino , Genótipo , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...